implement dedicated classses for input and route management

This commit is contained in:
Evan Scamehorn
2025-12-02 13:00:18 -06:00
parent 45b8811767
commit e885f34d6d
3 changed files with 353 additions and 231 deletions

71
src/InputManager.js Normal file
View File

@@ -0,0 +1,71 @@
import * as THREE from 'three';
export class InputManager {
constructor(camera, domElement, scene) {
this.camera = camera;
this.domElement = domElement;
this.scene = scene;
this.raycaster = new THREE.Raycaster();
this.mouse = new THREE.Vector2();
// State for Pan detection
this.downPosition = new THREE.Vector2();
this.upPosition = new THREE.Vector2();
this.isDragging = false;
// Callbacks
this.onClick = null; // Function(point, intersectionObject)
}
init() {
this.domElement.addEventListener('pointerdown', this.onPointerDown.bind(this));
this.domElement.addEventListener('pointerup', this.onPointerUp.bind(this));
}
onPointerDown(event) {
if (event.button !== 0) return; // Only left click
this.downPosition.set(event.clientX, event.clientY);
this.isDragging = false;
}
onPointerUp(event) {
if (event.button !== 0) return;
this.upPosition.set(event.clientX, event.clientY);
// Calculate distance moved
const distance = this.downPosition.distanceTo(this.upPosition);
// Threshold (pixels): If moved more than 3px, it's a pan, not a click
if (distance > 3) {
this.isDragging = true;
return; // Ignore
}
this.handleClick(event);
}
handleClick(event) {
// 1. Normalize Mouse
this.mouse.x = (event.clientX / window.innerWidth) * 2 - 1;
this.mouse.y = -(event.clientY / window.innerHeight) * 2 + 1;
// 2. Raycast
this.raycaster.setFromCamera(this.mouse, this.camera);
const intersects = this.raycaster.intersectObjects(this.scene.children, true);
if (intersects.length > 0) {
// Find the first relevant hit (Ground or Markers)
// For now, we prioritize Markers, then Ground
const hit = intersects.find(obj =>
obj.object.name === "GROUND" || obj.object.userData.isMarker
);
if (hit && this.onClick) {
this.onClick(hit.point, hit.object);
}
}
}
}

248
src/RouteManager.js Normal file
View File

@@ -0,0 +1,248 @@
import * as THREE from 'three';
export class RouteManager {
constructor(scene, settings) {
this.scene = scene;
this.settings = settings;
this.graphData = null;
// State: A route is an ordered list of Node IDs
this.currentRouteNodes = [];
// Visuals
this.markers = [];
this.pathMesh = null;
// Constants
this.ROAD_OFFSET = 3.0; // Meters to right
}
initGraph(data) {
this.graphData = data;
// Prepare Adjacency List (mirrors previous logic)
// IMPORTANT: Fix coordinates here once, so logic uses correct Z
this.graphData.adjacency = {};
// 1. Flip Y to Z for Nodes
for (let key in this.graphData.nodes) {
this.graphData.nodes[key].y = -this.graphData.nodes[key].y;
}
// 2. Process Edges
this.graphData.edges.forEach((edge, index) => {
// Flip geometry points
if (edge.points) {
edge.points.forEach(p => { p[1] = -p[1]; });
}
if (!this.graphData.adjacency[edge.u]) this.graphData.adjacency[edge.u] = [];
this.graphData.adjacency[edge.u].push({
to: edge.v,
cost: edge.length || 1,
edgeIndex: index
});
if (!edge.oneway) {
if (!this.graphData.adjacency[edge.v]) this.graphData.adjacency[edge.v] = [];
this.graphData.adjacency[edge.v].push({
to: edge.u,
cost: edge.length || 1,
edgeIndex: index,
isReverse: true
});
}
});
}
// ============================
// Interaction Methods
// ============================
/**
* Called when user clicks the map. Adds a node to the route.
*/
addNodeByWorldPosition(vector3) {
if (!this.graphData) return;
const nodeId = this.findNearestNode(vector3.x, vector3.z);
// Prevent adding same node twice in a row
if (this.currentRouteNodes.length > 0 &&
this.currentRouteNodes[this.currentRouteNodes.length - 1] === nodeId) {
return;
}
this.currentRouteNodes.push(nodeId);
// Visuals
this.addMarker(nodeId);
this.updatePathVisuals();
}
resetRoute() {
this.currentRouteNodes = [];
// Clear Visuals
this.markers.forEach(m => this.scene.remove(m));
this.markers = [];
if (this.pathMesh) {
this.scene.remove(this.pathMesh);
this.pathMesh = null;
}
}
// ============================
// Logic & Algorithms
// ============================
findNearestNode(x, z) {
let closestId = null;
let minDist = Infinity;
for (const [id, node] of Object.entries(this.graphData.nodes)) {
const dx = node.x - x;
const dz = node.y - z; // Graph Y is World Z
const d2 = dx * dx + dz * dz;
if (d2 < minDist) {
minDist = d2;
closestId = parseInt(id);
}
}
return closestId;
}
updatePathVisuals() {
// We need at least 2 nodes to draw a path
if (this.currentRouteNodes.length < 2) return;
// 1. Calculate Full Path (Segment by Segment)
let fullPathPoints = [];
for (let i = 0; i < this.currentRouteNodes.length - 1; i++) {
const start = this.currentRouteNodes[i];
const end = this.currentRouteNodes[i + 1];
const segmentEdges = this.computePathAStar(start, end);
if (!segmentEdges) {
console.warn(`No path found between ${start} and ${end}`);
continue;
}
// Process Geometry for this segment
segmentEdges.forEach(step => {
const rawPoints = step.edgeData.points;
let segmentPoints = rawPoints.map(p => new THREE.Vector2(p[0], p[1]));
if (step.isReverse) segmentPoints.reverse();
const offsetSegment = this.getOffsetPath(segmentPoints, this.ROAD_OFFSET);
offsetSegment.forEach(p => {
fullPathPoints.push(new THREE.Vector3(p.x, 0.5, p.y));
});
});
}
// 2. Draw Tube
if (this.pathMesh) this.scene.remove(this.pathMesh);
if (fullPathPoints.length < 2) return;
const curve = new THREE.CatmullRomCurve3(fullPathPoints);
const tubeGeom = new THREE.TubeGeometry(curve, fullPathPoints.length, 1.5, 6, false);
const tubeMat = new THREE.MeshBasicMaterial({ color: this.settings.colors.route });
this.pathMesh = new THREE.Mesh(tubeGeom, tubeMat);
this.scene.add(this.pathMesh);
}
addMarker(nodeId) {
const node = this.graphData.nodes[nodeId];
const geom = new THREE.SphereGeometry(4);
// Color logic: Green for start, Red for end, Yellow for waypoints
let color = this.settings.colors.pathStart;
if (this.markers.length > 0) color = 0xFFFF00; // Middle
const mat = new THREE.MeshBasicMaterial({ color: color });
const mesh = new THREE.Mesh(geom, mat);
mesh.position.set(node.x, 2, node.y);
mesh.userData = { isMarker: true, nodeId: nodeId }; // Tag for input manager
this.scene.add(mesh);
this.markers.push(mesh);
// Update last marker to Red
if (this.markers.length > 1) {
this.markers[this.markers.length - 1].material.color.setHex(this.settings.colors.pathEnd);
}
}
// ============================
// A* Implementation
// ============================
computePathAStar(start, end) {
const openSet = new Set([start]);
const cameFrom = {};
const gScore = {};
const fScore = {};
gScore[start] = 0;
fScore[start] = this.heuristic(start, end);
while (openSet.size > 0) {
let current = null;
let minF = Infinity;
for (const node of openSet) {
const score = fScore[node] !== undefined ? fScore[node] : Infinity;
if (score < minF) { minF = score; current = node; }
}
if (current === end) return this.reconstructPath(cameFrom, current);
openSet.delete(current);
const neighbors = this.graphData.adjacency[current] || [];
for (const neighbor of neighbors) {
const tentativeG = gScore[current] + neighbor.cost;
if (tentativeG < (gScore[neighbor.to] !== undefined ? gScore[neighbor.to] : Infinity)) {
cameFrom[neighbor.to] = { prev: current, edgeIdx: neighbor.edgeIndex, isReverse: neighbor.isReverse };
gScore[neighbor.to] = tentativeG;
fScore[neighbor.to] = tentativeG + this.heuristic(neighbor.to, end);
openSet.add(neighbor.to);
}
}
}
return null;
}
heuristic(a, b) {
const nA = this.graphData.nodes[a];
const nB = this.graphData.nodes[b];
return Math.sqrt((nA.x - nB.x) ** 2 + (nA.y - nB.y) ** 2);
}
reconstructPath(cameFrom, current) {
const edges = [];
while (current in cameFrom) {
const data = cameFrom[current];
edges.push({ edgeData: this.graphData.edges[data.edgeIdx], isReverse: data.isReverse });
current = data.prev;
}
return edges.reverse();
}
getOffsetPath(points, offset) {
if (points.length < 2) return points;
const newPath = [];
for (let i = 0; i < points.length - 1; i++) {
const p1 = points[i];
const p2 = points[i + 1];
const dir = new THREE.Vector2().subVectors(p2, p1).normalize();
const normal = new THREE.Vector2(-dir.y, dir.x);
const off = normal.multiplyScalar(offset);
newPath.push(new THREE.Vector2().addVectors(p1, off));
if (i === points.length - 2) newPath.push(new THREE.Vector2().addVectors(p2, off));
}
return newPath;
}
}

View File

@@ -2,6 +2,10 @@ import * as THREE from 'three';
import { MapControls } from 'three/addons/controls/MapControls.js'; import { MapControls } from 'three/addons/controls/MapControls.js';
import * as BufferGeometryUtils from 'three/addons/utils/BufferGeometryUtils.js'; import * as BufferGeometryUtils from 'three/addons/utils/BufferGeometryUtils.js';
// Import our new Phase 1 Managers
import { InputManager } from './InputManager.js';
import { RouteManager } from './RouteManager.js';
// ========================================== // ==========================================
// 1. Configuration // 1. Configuration
// ========================================== // ==========================================
@@ -23,77 +27,45 @@ const SETTINGS = {
} }
}; };
let scene, camera, renderer, controls, raycaster; let scene, camera, renderer, controls;
let mouse = new THREE.Vector2(); let inputManager, routeManager;
let routingData = null;
let cityData = null;
// Interaction State
let startNode = null;
let endNode = null;
let markers = { start: null, end: null, pathMesh: null };
function init() { function init() {
setupScene(); setupScene();
setupInteractions();
// -- PHASE 1 INITIALIZATION --
// Initialize Managers
inputManager = new InputManager(camera, renderer.domElement, scene);
routeManager = new RouteManager(scene, SETTINGS);
// Wire up Input to Route Logic
inputManager.init();
inputManager.onClick = (point, object) => {
// If we clicked the ground, we add a node to the route
if (object.name === "GROUND") {
routeManager.addNodeByWorldPosition(point);
}
// If we clicked a marker, we could eventually select it for dragging (Phase 3)
else if (object.userData.isMarker) {
console.log("Clicked Marker:", object.userData.nodeId);
}
};
// Load Data
Promise.all([ Promise.all([
fetch(SETTINGS.files.visual).then(r => r.json()), fetch(SETTINGS.files.visual).then(r => r.json()),
fetch(SETTINGS.files.routing).then(r => r.json()) fetch(SETTINGS.files.routing).then(r => r.json())
]).then(([visual, routing]) => { ]).then(([visual, routing]) => {
cityData = visual; console.log("Data loaded.");
routingData = routing; renderCity(visual);
routeManager.initGraph(routing); // Pass data to RouteManager
renderCity(cityData);
prepareGraph(routingData); // This now fixes the coordinates!
}); });
animate(); animate();
} }
// ========================================== // ==========================================
// 2. Data Preparation & Coordinate Fix // 2. Scene Setup
// ==========================================
function prepareGraph(data) {
// We must FLIP the Y coordinate of the graph data to -Z
// because our visual map is rotated -90deg on the X axis.
data.adjacency = {};
// 1. Fix Nodes
for (let key in data.nodes) {
data.nodes[key].y = -data.nodes[key].y; // FLIP Y to Negative
}
// 2. Fix Edges
data.edges.forEach((edge, index) => {
// Flip geometry points
if (edge.points) {
edge.points.forEach(p => { p[1] = -p[1]; });
}
// Build Adjacency List
if (!data.adjacency[edge.u]) data.adjacency[edge.u] = [];
data.adjacency[edge.u].push({
to: edge.v,
cost: edge.length || 1,
edgeIndex: index
});
if (!edge.oneway) {
if (!data.adjacency[edge.v]) data.adjacency[edge.v] = [];
data.adjacency[edge.v].push({
to: edge.u,
cost: edge.length || 1,
edgeIndex: index,
isReverse: true
});
}
});
}
// ==========================================
// 3. Scene Setup
// ========================================== // ==========================================
function setupScene() { function setupScene() {
scene = new THREE.Scene(); scene = new THREE.Scene();
@@ -108,9 +80,9 @@ function setupScene() {
renderer.shadowMap.enabled = true; renderer.shadowMap.enabled = true;
document.body.appendChild(renderer.domElement); document.body.appendChild(renderer.domElement);
// Lights
const ambient = new THREE.HemisphereLight(0xffffff, 0x555555, 0.7); const ambient = new THREE.HemisphereLight(0xffffff, 0x555555, 0.7);
scene.add(ambient); scene.add(ambient);
const dirLight = new THREE.DirectionalLight(0xffffff, 1.5); const dirLight = new THREE.DirectionalLight(0xffffff, 1.5);
dirLight.position.set(500, 1000, 500); dirLight.position.set(500, 1000, 500);
dirLight.castShadow = true; dirLight.castShadow = true;
@@ -121,6 +93,7 @@ function setupScene() {
dirLight.shadow.camera.bottom = -1500; dirLight.shadow.camera.bottom = -1500;
scene.add(dirLight); scene.add(dirLight);
// Ground Plane
const plane = new THREE.Mesh( const plane = new THREE.Mesh(
new THREE.PlaneGeometry(10000, 10000), new THREE.PlaneGeometry(10000, 10000),
new THREE.MeshLambertMaterial({ color: SETTINGS.colors.ground }) new THREE.MeshLambertMaterial({ color: SETTINGS.colors.ground })
@@ -131,43 +104,24 @@ function setupScene() {
plane.receiveShadow = true; plane.receiveShadow = true;
scene.add(plane); scene.add(plane);
// Controls
controls = new MapControls(camera, renderer.domElement); controls = new MapControls(camera, renderer.domElement);
controls.dampingFactor = 0.05; controls.dampingFactor = 0.05;
controls.enableDamping = true; controls.enableDamping = true;
controls.maxPolarAngle = Math.PI / 2 - 0.1; controls.maxPolarAngle = Math.PI / 2 - 0.1;
raycaster = new THREE.Raycaster();
}
function setupInteractions() {
window.addEventListener('resize', () => { window.addEventListener('resize', () => {
camera.aspect = window.innerWidth / window.innerHeight; camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix(); camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight); renderer.setSize(window.innerWidth, window.innerHeight);
}); });
window.addEventListener('pointerdown', (event) => {
if (event.button !== 0) return;
mouse.x = (event.clientX / window.innerWidth) * 2 - 1;
mouse.y = -(event.clientY / window.innerHeight) * 2 + 1;
raycaster.setFromCamera(mouse, camera);
const intersects = raycaster.intersectObjects(scene.children);
const hit = intersects.find(obj => obj.object.name === "GROUND");
if (hit && routingData) {
// Pass the Hit Point (X, Z) directly.
// Z corresponds to our flipped Y in the graph.
handleMapClick(hit.point.x, hit.point.z);
}
});
} }
// ========================================== // ==========================================
// 4. Visual Rendering // 3. Visual Rendering (Static City)
// ========================================== // ==========================================
function renderCity(data) { function renderCity(data) {
// This logic is unchanged from before, just strictly for static geometry
const createLayer = (items, color, height, lift, isExtruded) => { const createLayer = (items, color, height, lift, isExtruded) => {
if (!items || !items.length) return; if (!items || !items.length) return;
const geometries = []; const geometries = [];
@@ -217,157 +171,6 @@ function renderCity(data) {
createLayer(data.buildings, SETTINGS.colors.building, 10, 0, true); createLayer(data.buildings, SETTINGS.colors.building, 10, 0, true);
} }
// ==========================================
// 5. Routing Logic (A*)
// ==========================================
function handleMapClick(x, z) {
const nearestId = findNearestNode(x, z);
if (!startNode) {
startNode = nearestId;
placeMarker('start', routingData.nodes[nearestId], SETTINGS.colors.pathStart);
if (markers.end) { scene.remove(markers.end); markers.end = null; }
if (markers.pathMesh) { scene.remove(markers.pathMesh); markers.pathMesh = null; }
endNode = null;
} else {
endNode = nearestId;
placeMarker('end', routingData.nodes[nearestId], SETTINGS.colors.pathEnd);
const path = computePathAStar(startNode, endNode);
if (path) drawPath(path);
startNode = null;
}
}
function findNearestNode(x, z) {
let closestId = null;
let minDist = Infinity;
for (const [id, node] of Object.entries(routingData.nodes)) {
// node.y is already flipped to match Z
const dx = node.x - x;
const dz = node.y - z;
const d2 = dx * dx + dz * dz;
if (d2 < minDist) {
minDist = d2;
closestId = parseInt(id);
}
}
return closestId;
}
function computePathAStar(start, end) {
const openSet = new Set([start]);
const cameFrom = {};
const gScore = {};
const fScore = {};
gScore[start] = 0;
fScore[start] = heuristic(start, end);
while (openSet.size > 0) {
let current = null;
let minF = Infinity;
for (const node of openSet) {
const score = fScore[node] !== undefined ? fScore[node] : Infinity;
if (score < minF) { minF = score; current = node; }
}
if (current === end) return reconstructPath(cameFrom, current);
openSet.delete(current);
const neighbors = routingData.adjacency[current] || [];
for (const neighbor of neighbors) {
const tentativeG = gScore[current] + neighbor.cost;
if (tentativeG < (gScore[neighbor.to] !== undefined ? gScore[neighbor.to] : Infinity)) {
cameFrom[neighbor.to] = { prev: current, edgeIdx: neighbor.edgeIndex, isReverse: neighbor.isReverse };
gScore[neighbor.to] = tentativeG;
fScore[neighbor.to] = tentativeG + heuristic(neighbor.to, end);
openSet.add(neighbor.to);
}
}
}
return null;
}
function heuristic(a, b) {
const nA = routingData.nodes[a];
const nB = routingData.nodes[b];
return Math.sqrt((nA.x - nB.x) ** 2 + (nA.y - nB.y) ** 2);
}
function reconstructPath(cameFrom, current) {
const edges = [];
while (current in cameFrom) {
const data = cameFrom[current];
edges.push({ edgeData: routingData.edges[data.edgeIdx], isReverse: data.isReverse });
current = data.prev;
}
return edges.reverse();
}
// ==========================================
// 6. Path Drawing
// ==========================================
function drawPath(pathEdges) {
if (markers.pathMesh) scene.remove(markers.pathMesh);
const points = [];
const ROAD_OFFSET = 3.0;
pathEdges.forEach(step => {
const rawPoints = step.edgeData.points;
// Map raw array to Vectors. Note: p[1] is already flipped to Z space
let segmentPoints = rawPoints.map(p => new THREE.Vector2(p[0], p[1]));
if (step.isReverse) segmentPoints.reverse();
// Calculate offset for "Right Hand Drive"
const offsetSegment = getOffsetPath(segmentPoints, ROAD_OFFSET);
offsetSegment.forEach(p => {
// p.x is X, p.y is Z (since we flipped it)
points.push(new THREE.Vector3(p.x, 0.5, p.y));
});
});
const curve = new THREE.CatmullRomCurve3(points);
const tubeGeom = new THREE.TubeGeometry(curve, points.length, 1.5, 6, false);
const tubeMat = new THREE.MeshBasicMaterial({ color: SETTINGS.colors.route });
markers.pathMesh = new THREE.Mesh(tubeGeom, tubeMat);
scene.add(markers.pathMesh);
}
function getOffsetPath(points, offset) {
if (points.length < 2) return points;
const newPath = [];
for (let i = 0; i < points.length - 1; i++) {
const p1 = points[i];
const p2 = points[i + 1];
const dir = new THREE.Vector2().subVectors(p2, p1).normalize();
// Normal for Right side: (-y, x)
// Since our Coordinate system is flipped (Z is inverted), (-y, x) works as "Right"
const normal = new THREE.Vector2(-dir.y, dir.x);
const off = normal.multiplyScalar(offset);
newPath.push(new THREE.Vector2().addVectors(p1, off));
if (i === points.length - 2) newPath.push(new THREE.Vector2().addVectors(p2, off));
}
return newPath;
}
function placeMarker(type, node, color) {
if (markers[type]) scene.remove(markers[type]);
const geom = new THREE.SphereGeometry(4);
const mat = new THREE.MeshBasicMaterial({ color: color });
const mesh = new THREE.Mesh(geom, mat);
// node.y is now Z
mesh.position.set(node.x, 2, node.y);
markers[type] = mesh;
scene.add(mesh);
}
function animate() { function animate() {
requestAnimationFrame(animate); requestAnimationFrame(animate);
controls.update(); controls.update();